|
|
| Line 57: |
Line 57: |
| : <math> \left. A(N,L,T) = - k_B T \log Q \right. </math> | | : <math> \left. A(N,L,T) = - k_B T \log Q \right. </math> |
|
| |
|
| In the thermodynamic limit (i.e. <math> N \rightarrow \infty; L \rightarrow \infty</math> with <math> \rho = N/L </math> remaining finite: | | In the thermodynamic limit (i.e. <math> N \rightarrow \infty; L \rightarrow \infty</math> with <math> \rho = N/L </math> remaining finite(: |
| | |
| | : |
|
| |
|
| ==References== | | ==References== |
Revision as of 11:47, 27 February 2007
Hard Rods, 1-dimensional system with hard sphere interactions.
The statistical mechanics of this system can be solved exactly (see Ref. 1).
Canonical Ensemble: Configuration Integral
This part could require further improvements
Consider a system of length
defined in the range
.
Our aim is to compute the partition function of a system of
hard rods of length
.
Model:
- External Potential; the whole length of the rod must be inside the range:


where
is the position of the center of the k-th rod.
Consider that the particles are ordered according to their label:
;
- taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of
particles as:

Variable change:
; we get:
Therefore:

Thermodynamics
Helmholz energy function

In the thermodynamic limit (i.e.
with
remaining finite(:
References
- Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
- L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
- L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)